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Abstract

A method using discrete cross-correlation for identifying and removing spuri-
ous Lyapunov exponents when embedding experimental data in a dimension
greater than the original system is introduced. The method uses a distri-
bution of calculated exponent values produced by modeling a single time
series many times or multiple instances of a time series. For this task, global
models are shown to compare favorably to local models traditionally used for
time series taken from the Hénon map and delayed Hénon map, especially
when the time series are short or contaminated by noise. An additional merit
of global modeling is its ability to estimate the dynamical and geometrical
properties of the original system such as the attractor dimension, entropy,
and lag space, although consideration must be taken for the time it takes to
train the global models.
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1. Introduction

When presented with an experimental time series from a dynamical sys-
tem, one is often faced with the question of whether the underlying dynamic
is chaotic, and if so to quantify the sensitive dependence on initial conditions
and attractor dimension. Such information is contained in the spectrum of
Lyapunov exponents (LEs) which measures the rate of divergence (or con-
vergence if negative) of nearby trajectories in the state space. Lyapunov
exponents describe the evolution of a ball of initial conditions as they are
stretched and squashed into an ellipsoid with principal axes corresponding
to each exponent [1]. By convention, the LE spectrum is ordered from great-
est to least values, and it can be used to calculate important measures of
the dynamical system. For example, the Kolmogorov-Sinai entropy can be
determined by summing the positive LEs according to Pesin’s identity [2],
the attractor dimension can be estimated from the LE spectrum using the
Kaplan-Yorke conjecture [3], and the state space dimension can be deter-
mined from the number of non-spurious LEs.

If one knows the equations that produced the data, the LE spectrum can
be calculated exactly using the standard Jacobian algorithm in which the
eigenvalues are calculated for the product of the Jacobian matrices along the
orbit [4]. Gram-Schmidt re-orthonormalization is used to factor out multipli-
ers that lead to numerical divergence and performs row reduction, helping to
retain product matrix column independence. Even so, it is often necessary to
follow the orbit for a long time to ensure that the state space is adequately
sampled and that the values obtained by the method have converged.

Since one rarely has the luxury of knowing the equations, methods for ap-
proximating the LEs directly from the data have been proposed [4][5][6][7][8].
These methods typically estimate the local Jacobian by fitting the data in
the vicinity of each data point to a simple function by considering the local
neighborhood around a point. Since each neighborhood must contain suffi-
ciently many points, local methods are severely limited by the length of the
time series and by the inevitable noise that accompanies experimental data,
but they are reasonably fast since they require only a single pass through the
data.

An alternative is to construct a global model of the data, which is more
difficult but has the advantage of using the entire data set and better averages
the noise present in the data. Training such a global model with a sufficiently
general functional form allows approximation of the LE spectrum using the



standard Jacobian algorithm as shown in [9].

With either method, one must choose an embedding dimension that ad-
equately describes the state space or dynamics of the system. Takens [10]
showed that complete unfolding is guaranteed for a D-dimensional system if
the model is embedded in a dimension greater than 2D. Algorithms such as
false nearest neighbors and the plateau of the correlation dimension calcu-
lation can be used to determine the optimal embedding dimension [11][12].
We have recently proposed a method in which a global model of the data is
used to determine the optimal embedding dimension, and more particularly,
the lag space for cases in which only a subset of the embedding dimension is
active [13].

If the embedding dimension d of a model is higher than the system dimen-
sion D, the estimated LE spectrum will contain d— D spurious LEs [14]. Em-
bedding in a dimension higher than necessary allows multiple solutions with
different dynamics that have the same projection onto the D-dimensional
manifold. Ideally, the dynamics in dimensions greater than D would be
limited. However, these exponents are often positive and greater than the
largest true LE even when the data are generated from simple chaotic maps
[15] and independent of any measurement or reconstruction function used
[16]. Identification and removal of these spurious exponents is crucial since
inaccuracies in the spectrum lead to incorrect estimation of other measures.

2. Spurious Lyapunov Exponent Identification

Methods have been proposed to identify spurious LEs with varying de-
grees of success. Brown et al. [5] recommended adding white measurement
noise to the data. True Lyapunov exponents tend to be significantly more
resistant to noise than spurious ones since dimensions unrelated to the dy-
namics of the time series are dominated by noise and vary with it, while
the other dimensions are simply contaminated. Alternately, varying the em-
bedding dimension may identify spurious exponents since true exponents are
independent of the choice of embedding while spurious exponents will con-
tinually shift [17].

Parlitz et al. [18] proposed using time reversal to identify spurious LEs.
Reversing the order of the data points in the time series results in a dynamic
where even dimensions are reflected and odd dimensions are rotated in time-
delayed embedding space. Such reversal generally converts attractors into
repellors, reversing the sign of each LE. Models tend to fit the time-reversed



data just as well as the actual data since the same state space points, out-
liers, noise, and local curvature are present. Models that fit these data well
will have true LEs whose values change sign when time is reversed while spu-
rious exponents do not reverse sign since those exponents arise from fitting
a function to dimensions in which no information is available from the time
series.

As an extension of Parlitz’s method, we propose a method based on
time series reversal that uses discrete cross-correlation, referred to as cross-
correlation for the rest of the article, to identify and remove spurious ex-
ponents. Two sets of calculated LE values are produced from modeling a
time series and its time-reversed counterpart many times. After inverting
the LE values in the time-reversed set, a probability histogram is created for
each set by sorting the LE values into bins in ascending order and count-
ing the number of values in each bin then normalizing the resulting vector.
Discrete cross-correlation [19] is applied to the two histograms. The forward
histogram is slid through the time-reversed histogram to create a histogram
that is then normalized. Spurious exponents are identified and removed by
identifying peaks in this new histogram. To estimate the LE spectrum val-
ues, one can either take the center of the highest probability bins as the LE
value or fit a parabola to the three nearest bin centers and take the maxi-
mum of the parabola as the LE value. The latter was used to produce the
results in this study. For higher-dimensional systems with LE values that
cluster closely together, greater resolution or more bins may be required to
resolve overlaps in the values. The results of cross-correlation for a single
sample of 512 points from the Hénon map are shown in Fig. 1. In Fig. 1(A),
a histogram of LE values, with 640 bins and 36, 138 training instances with
d = 6 is shown for the forward time series. In this graph we expect the mod-
els of the data to find LE values near the true LE values, 0.422 and —1.623,
indicated by the arrows on the horizontal axis below Fig. 1(C), and the his-
togram shows high probability bins or peaks near these values. Without time
reversal, the spurious exponents are spread out mostly in the range between
—2 and —1 where a true exponent, —1.623, is known to exist. In Fig. 1(B),
the histogram of LE values for 34,918 training instances is shown for the
time-reversed time series with the sign of the LE values already inverted and
Fig. 1(C) shows the results of cross-correlation.

The cross-correlation method is accurate in removing spurious LEs since
it averages noise within the LE values between different training instances.
Since the method is general, the model used to reconstruct the LE spectra
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can be easily changed. However, the method has particular issues that are
time-series and model dependent. The method requires stochasticity in the
model, training algorithm, or data that allow variation in the calculated LE
values which is highlighted in Fig. 2 where local linear fits are used to estimate
the Hénon map’s LE spectrum. In Fig. 2(A) the forward and time-reversed
histograms are shown overlaid with only a few bins overlapping, leading to
inaccurate LEs in Fig. 2(B). This problem stems from using the same model
parameters for multiple training instances with a purely deterministic model.
For parametric models with only a few parameters such as local linear fits,
one can vary the model parameters to obtain variations in the estimated LEs.
Models such as neural networks may also have variable parameters that are
learned through a stochastic training algorithm. For example, the training
algorithm used in this paper depends on randomly selecting the weights while
trying to improve the model’s accuracy. Through this random selection, the
model searches a large space of possible solutions and will rarely find the
exact same solution and LE spectrum. Backpropagation, another training
algorithm, may produce the exact same LE values for the same data set since
it usually only searches in directions that improve accuracy. However, varia-
tions can be introduced by randomly initializing the neural network weights
or by perturbing the weights as the network is trained. As an alternative
to varying the model parameters, one could vary the dataset through the
addition of noise or by varying how the data is partitioned between training
instances.

Cross-correlation in instances where an overspecified model leads to highly
variable LE values or numerous peaks in the cross-correlated graph results in
more difficult spurious LE removal. A different method for binning the data
can be chosen to overcome the increased variability by giving more resolu-
tion to regions of the histogram that have higher density while keeping the
number of bins consistent between the forward and time-reversed time series.
To do this, one can combine the forward and time-reversed LE values into
one histogram and hold the number of points per bin fixed to obtain bins
with a set number of points. Using the bin boundaries, one separates the
histograms and performs cross-correlation to record the highest probability
estimated LEs. This process could be repeated with a different number of
points per bin to determine which LE values are most consistent. Binning
based on density also has a smoothing effect on the data and may reduce
inaccuracies caused by binning too large of a region. Using either strategy
or combining both results can lead to more accurate LE estimates.



3. The Models

Neural network and local linear fits were used to estimate LE spectra for
discrete-time systems. The models were trained on time-delayed data taken
from the Hénon map and the delayed Hénon map and optimized for next-
step prediction based on d dimensions or time lags. In addition to removing
the spurious exponents, the models produce more accurate LE values when
using cross-correlation than by simply averaging a number of trials. The
advantages of using global models can be seen in each of the experiments.

As one of the global models considered, neural networks have a rich his-
tory. Hornik et al. [20] proved that neural networks are universal approxi-
mators, showing that any smooth function could be represented to arbitrary
accuracy by a single-layer feed-forward neural network with sufficiently many
neurons. Single-layer neural networks are composed of a matrix of coefficients
that represent input connection strengths to each neuron and a vector repre-
senting the strength of each neuron’s respective contribution to the output,
shown schematically in Fig. 3.

The general form used in this study is

n d
Ty = Z b; tanh(aio + Z az’jxk—j>
i=1 J=1

where n is the number of neurons, a;; is an n by d matrix of coefficients,
b; is a vector of coefficients of length n, x is the training time series, and
2k is the predicted value for time step k. While these neural networks used
a hyperbolic tangent nonlinearity, there is nothing to prevent using other
functions such as polynomials. Using a quadratic nonlinearity with only two
neurons allows a nearly perfect fit to Hénon map data, but we consider this to
be a trivial and not very useful example other than to check the calculation.

One can fit a neural network to data by adjusting the connection strengths
a and b to minimize the error. To avoid having the network always train to
one or more identical solutions, a stochastic training method was used. The
method resembles simulated annealing, with the coefficients chosen randomly
from a slowly shrinking Gaussian neighborhood of the current best solution.
The Gaussian is taken to have an initial standard deviation of 27 centered
on zero to give preference to the most recent time lags (small j values).
The connection strengths are chosen to minimize the average one-step mean-
square prediction error:

o — Zi:dﬂ () — xk)Q

c—d




where c is the length of the time series (the number of data points). For each
of the systems described, a network with four neurons (n = 4) was trained
for one million iterations on the data. Adding more neurons allows better
fits but at the expense of computation time. With an unknown system, it
may be necessary to train with different numbers of neurons to identify the
optimum network size.

The neural network LE spectra estimations are compared to those ob-
tained using the publicly available TISEAN package which implements Sano
and Sawada’s algorithm for estimating the LE spectra of experimental time
series [8][21]. The LE spectrum in TISEAN is estimated by fitting local lin-
ear models of the form s,; = a,s, + b, where a,, and b, are given by the
least squares minimization of 6% = >, (s41 — ans; — by)? and {s;} is the set of
neighbors that are within some ball of distance € of s, or some fixed number
of nearest neighbors of s, in the d-dimensional embedding. After approxi-
mating the linearized flow map, a,, which ends up being the first row of the
local Jacobian, the LE spectrum is estimated using the standard Jacobian
algorithm.

We compare the global neural network model to local linear fits by testing
their ability to approximate the Hénon map and delayed Hénon map systems.
One advantage of global models is their ability to create an analytical function
of the experimental data. The hope is that if the function fits the data
accurately, then one can generate an infinite amount of data from the model
and estimate dynamical and topological properties of the original system
that would traditionally require a much longer data record. In practice this
is not generally the case except for simple systems. However, if the global
model has been well trained, it can represent data even in regions of state
space where data are sparse. Additionally, global models tend to be robust
to small amounts of noise due to their ability to average this noise over
the entire attractor. Although global models have these advantages, they
often suffer from training inefficiency. For example, a neural network must
be trained to fit the data, requiring many passes through the data set and
many changes to the connection strengths. Furthermore, for many training
algorithms including the one described, there is no proof of convergence or
guarantee that the neural network will ever find the global solution since
the space being explored is non-convex. Unlike neural networks, local linear
fits excel in their simplicity and efficiency. Local models need only one pass
through the data to calculate averages and nearest neighbors and to estimate
the LE spectrum. However, local models suffer when the time series is short
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or noisy, as will be shown. They also do not accurately represent regions of
the attractor where data are sparse or regions off the attractor.

4. Numerical Results

The advantages of neural networks are illustrated by comparing their
predicted Lyapunov exponent spectra with the spectra predicted from the
local linear model using data from the Hénon map [22] and data of various
lengths taken from the delayed Hénon map [23] with and without added
noise.

The Hénon map in time-delayed form,

oy =1— 1427 ;| + 0.3z,
and its strange attractor in Fig. 4, represents a simple two-dimensional sys-
tem with LE values of 0.422 and —1.623 as shown in [24]. For the following
results, the embedding dimension of the models was set to six; since the
Hénon map is a two-dimensional system, four spurious LEs should be pro-
duced. The number of nearest neighbors used in the local linear fits was fixed
at 230; a value chosen to minimize the LE spectrum error using a tuning set
of 4,096 points taken from the Hénon map. The number of neurons needed
to model the data by the neural network can also be chosen in a similar man-
ner since the use of a training set helps to estimate the model complexity
required for the system. Neural networks with four neurons can accurately
model the systems studied.

Table 1 summarizes the results for each method applied to the Hénon
map with 32,768 points where 200 trials represents the models trained on
100 forward time series and 100 time reversed time series. Even for this
simple map, spurious exponents are intermingled with real values and in
some cases are within just a few percent of the actual exponents. Cross-
correlation serves to remove these spurious exponents but at the expense
of accuracy. Since we know the actual LE values of the Hénon map, we
can compare the averaged exponents to the actual exponents for the neural
network by manually removing the spurious exponents from the averaged
forward exponents, resulting in absolute errors of 0.007 and 0.068 while cross-
correlation removes the spurious exponents and has absolute errors of 0.007
and 0.041.

The local linear fits were able to estimate a positive exponent with an
absolute error of 0.009 after cross-correlation but could not determine the
negative exponent accurately. One of the difficulties in determining the LE



/\1 /\2 /\3 )\4 )\5 )\6
Actual Expo- 0.422 | -1.623
nents
Neural Net- | Data 0.415 | -1.399 | -1.555 | -1.703 | -1.829 | -2.291
work with 4
neurons
Reversed 1.565 | -0.434 | -1.445 | -1.540 | -1.704 | -1.890
Cross- 0.415 | -1.582
correlation
Error 0.007 | 0.041
Local linear | Data 1.318 | 0.809 | 0.398 | -0.790 | -1.477 | -1.904
fits with 230
neighbors
Reversed 2.099 | 1.326 | 0.801 | -0.429 | -0.869 | -1.340
Cross- 1.330 | 0.413 | -0.796
correlation
Error 0.009

Table 1: The averaged exponents for 100 trials with 32,768 points in each time series taken
from the Hénon map. Also included for each model are the results of cross-correlating the
200 time series. LEs are removed from the results if they are considered to be spurious, the
absolute error is greater than 0.5 when compared to the actual values. In practice, greater
accuracy could be achieved by varying data length, noise levels, or model parameters.




spectrum is estimating the negative exponent which measures the conver-
gence of orbits to the attractor, for which data are usually absent in the time
series. For both the forward and reversed time series, spurious exponents
are intermingled with the actual exponents and in the forward time series, a
spurious exponent is produced that is larger than the largest exponent. Even
with cross-correlation, two spurious exponents are produced, highlighting the
fact that unless local linear fits find LE values consistent between the forward
and reversed time series, the distributions of LE values may not overlap and
produce any cross-correlated LE values. Local linear fits tend to produce
low variance LE values when trained on a low complexity system such as the
Hénon map with a large number of points as seen in Fig. 2. By varying the
number of neighbors, additive noise, and number of points in the time series,
values may overlap and produce more accurate cross-correlated LE values.

The Hénon map can be generalized by replacing the linear term with an
earlier iterate in the time series [23]. The delayed Hénon map,

rp=1—1.627_; +0.1z,_p
whose attractor is shown in Fig. 5, has an adjustable dimension parameter
D that determines its complexity. For these results, D is taken to be four,
requiring an embedding dimension of four. Related to the embedding dimen-
sion, its lag space has only two dimensions, 1 and D, since the dynamics of
the time series depend only on the first and D-th time delay [13][25]. The LE
spectrum for this discrete dynamical system as determined from the equa-
tions using Wolf’s method [4] is 0.381,—0.813, —0.900, —0.971. The values
are believed to be accurate to three significant digits because the exponents
have converged to these values after one billion iterations from ten different
initial conditions within the basin of attraction.

If one embeds the time series in a six-dimensional space, two spurious
LEs will be produced since the original system only requires an embedding
of four. Table 2 shows how neural networks compare to local linear fits with
10 neighbors when each method is used to estimate the spectrum of the
delayed Hénon map.

Similar to the Hénon map, both of the models produce two spurious
exponents that are dissimilar from the rest. The neural network’s spurious
exponents are highly negative compared to the real exponents, making them
relatively easy to identify and remove for this map. Local linear fits produce
spurious exponents that are intermingled with the real exponents. If we
only select the averaged exponents nearest to the actual exponent values in
the forward time series, the exponent values have a lower error than the
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/\1 )\2 )\3 )\4 /\5 /\6
Actual Expo- 0.381 | -0.813 | -0.900 | -0.971
nents
Neural Net- | Data 0.381 |-0.794 | -0.899 | -0.988 | -2.524 | -2.906
work with 4
neurons
Reversed 1.042 | 0.763 | 0.441 | -0.482 | -2.611 | -3.035
Cross- 0.383 | -0.765 | -0.903 | -0.964
correlation
Error 0.002 | 0.048 | 0.003 | 0.007
Local linear | Data 0.926 | 0.393 |-0.292 | -0.829 | -0.973 | -1.199
fits with 10
neighbors
Reversed 1.128 | 0.920 | 0.755 | 0.225 | -0.407 | -0.907
Cross- 0.9207 | 0.40
correlation
Error 0.015

Table 2: The averaged exponents and resulting cross-correlation for 100 trials each with

32,768 points taken from the delayed Hénon map with D = 4.

1% white noise was

introduced into the results of the local linear fits during cross-correlation so LE values in

the histograms would overlap.
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reversed data. Using cross-correlation increases the overall accuracy of the
spectrum for the neural network however local linear fits only produce one
accurate positve exponent and a spurious exponent that is larger than the
most positive real LE. This inaccuracy arises from the lack of variation in
LE values even with 1% white noise introduced into the resulting LE values
to increase overlaps in the histograms.

In practice, one rarely has the advantage of having long, noise-free data
sets such as the ones described for the Hénon and delayed Hénon maps.
To test and compare the performance of each method under more adverse
conditions, variable noise and data length were introduced to time series
from the delayed Hénon map. To test data length, time series were collected
with 64 points through 32,768 points in powers of two. For each length of
data, distributions of LE values were produced from two hundred different
models embedded in six dimensions, one hundred on the forward time series
and one hundred on the time-reversed time series. Local linear fits were
parameterized with 40 neighbors and neural networks with four neurons.
After cross-correlation, the mean square LE error was calculated between
the estimated LE values and the expected LE values as shown in Fig. 6. The
results show that the mean square errors for the neural network are about ten
times smaller than the local linear fits in all of these time series. However, the
error of the local linear models decreases as more points are added, whereas
the global model errors change very little. The increase in error when the
number of points reaches 32,768 may indicate that the neural networks need
to be trained further.

The methods were also compared on time series with added measurement
noise. The models were embedded in six dimensions and trained on varying
levels of Gaussian white noise added to 4,096 points taken from the delayed
Hénon map. The error in the average values of the exponents for one hun-
dred trials are shown in Fig. 7. The neural network outperforms the local
linear fits for all levels of noise shown. For adequately sampled attractors, the
models successfully average small levels of measurement noise; however, neu-
ral networks’ robustness lies in their ability to create a global deterministic
model that is noise free albeit with some distortion of the signal.

The models were finally tested on normalized data taken from a nuclear
magnetic resonance laser [26]. We apply the cross-correlation method to
local linear fits and neural network models with d = 3 trained on this data
set. The neural network was initialized with 4 neurons, a value chosen by
minimizing the next step prediction error on a training set of 1,000 points
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Neural Net- | Data 0.251 | -0.315 | -1.178
work with 4
neurons
Reversed 0.197 | -0.247 | -0.604
Cross- 0.290 | -0.086 | -0.364
correlation
Local linear | Data 0.267 | -0.652 | -1.060
fits with 50
neighbors
Reversed 0.415 | -0.293 | -1.011
Cross- 0.277
correlation

Table 3: The averaged exponents and resulting cross-correlation for 200 trials of the nuclear
magnetic resonance laser data set.

and trained for one million iterations. The neural network then estimated the
LE spectrum using 25,000 points and 1% noise. The number of neighbors
used in local linear fits was set to 50, a value chosen by minimizing the
next step prediction error on 15,000 points. Local linear fits used blocks
of 25,000 points and 1% noise to introduce the variation needed in cross-
correlation. The results for 200 trials for each model can be seen in Table
3. For the forward time series, the neural networks produce three exponents
with two exponent values that are similar to local linear fits. Since both
models produce exponent values near 0.28, one could study how consistent
the exponent values are by varying the time series further and studying its
effect. In [21], a similar data set with LE values more consistent with the
local linear fits forward time series averaged exponent values is studied.

5. Conclusions

Neural network and local linear models are fit to the Hénon map and its
more complex counterpart, the delayed Hénon map. Results are also shown
for time series with various lengths of data and additive noise. Local linear fits
are shown to work well for time series with many thousands of data points
while global neural network models produce accurate LE spectra in these
simple systems with as few as 64 points. Local linear fits rely on simple local
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models to determine the LE spectrum but require a large number of points so
the neighborhood of each data point is adequately populated. When noise is
introduced, local linear fits and neural networks fail in cases where the noise
is prevalent, although neural networks are shown to be more robust to noise,
highlighting one of the strengths of global models. Neural networks build
a global model of the data, but there is a trade-off between the amount of
computation required and accuracy of the model. In computation-sensitive
applications, local linear fits would be advantageous since the LE spectrum
can be estimated in one pass through the data.

A method for removing spurious exponents is introduced that can esti-
mate the actual exponent values by cross-correlating the distributions of LE
values produced by estimating the LE spectrum for a time series and its time-
reversed counterpart many times. The method is shown to perform favorably
for the systems studied and works with any model of the time series, but care
should be taken when LEs have very similar values within a given system’s
LE spectrum or when the forward and reversed LE value distributions in the
resulting cross-correlation do not overlap.

The use of neural networks and other models remain important in the
study of dynamical systems, and much can be gleaned by analyzing models
trained on experimental data. Further studies involving transformations of
the data through various observer functions and the study of continuous-time
systems are beyond the scope of this paper but will be the subject of future
work.

A Windows version of the program used in this study is available on the
Web at http://sprott.physics.wisc.edu/chaos/maus/lagspace.htm.
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Figure 1: Cross-correlating the probability distributions produced by training many neural
networks with d = 6 on the Hénon map, with 512 points, removes the spurious Lyapunov
exponents. The spurious exponents in the forward time series are removed around the
negative exponent value because they shift when the time series is reversed and modeled.
The peaks in the (C) correspond to exponent values, 0.413 and —1.602, which are close to
the actual values, 0.422 and —1.623, indicated by the arrows.
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Figure 2: The LE value probability distributions and cross-correlation for Hénon map time
series with 32,768 points produced by local linear models with 150 neighbors. LE values
tend to have low variance with an increased data length. The resulting cross-correlation
is problematic if the distributions from the forward and time-reversed exponent values
do not overlap. Introducing stochasticity by incoporating noise into the data, LE, or
neighborhood may increase the amount by which values overlap.

Figure 3: The neural network schematic.
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Figure 5: The strange attractor of the delayed Hénon map (D = 4).
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Figure 6: The error in the averaged exponents for 100 trials from each model for the
delayed Hénon map (D = 4) for varying length time series. The removal of spurious LEs
for local linear fits was performed manually.
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Figure 7: The error in the averaged exponents for 100 trials from each model trained on
4,096 points from the delayed Hénon map (D = 4) for time series corrupted with Gaussian
white noise. The error bars represent one standard deviation. The removal of spurious
LEs for local linear fits was performed manually.
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