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Discrete Time Series
• Scalar chaotic time series

– i.e. average daily temperatures

• Data given discrete intervals
– i.e. seconds, days, etc.

• We assume a combination of past 
values in the time series predict the future

[45, 34, 23, 56, 34, 25, …]

Discrete Time Series (Wikimedia)



Time Lags
• Each discrete interval refers to a dimension or time lag
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Embedding Problem

• The embedding dimension is related to the 
minimum number of variables required to 
construct the data

Or

• Exactly how many time lags are required to 
reconstruct the system without any information 
being lost but without adding unnecessary 
information

– i.e. a ball seen in 2d, 3d, and 3d + Time

Problem:  How do we choose the optimal embedding dimension
that the model can use to unfold the data?
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ARMA Models
• Autoregressive Moving Average Models

– Fits a polynomial to the data based on linear combinations of past 
values

– Produces a linear function
– Can create very complicated dynamics but has difficulty with 

nonlinear systems
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Autocorrelation Function
• Finds correlations within data

• Much like the ARMA model, 
shows weak periodicity within 
nonlinear time series.

• No sense of the underlying
dynamical system

Logistic Map

( )11 14 -- -= kkk xxx

The Nature of Mathematical Modeling (1999)

http://books.google.com/books?id=h2ey7ajg_cQC&dq=the+nature+of+mathematical+modeling+gershenfeld&printsec=frontcover&source=bl&ots=JXsi7v62M5&sig=UiJtTtqvSGdv79UudrHnccghhwk&hl=en&ei=JQnySeS7BpjKMOf3zbwP&sa=X&oi=book_result&ct=result&resnum=3


Correlation Dimension
• Introduced in 1983 by Grassberger

and Procaccia to find the fractal 
dimension of a chaotic system

• One can determine the embedding 
dimension by calculating the 
correlation dimension in increasing 
dimensions until it ceases to change

• Good for large datasets with little noise

Measuring the Strangeness of Strange Attractors (1983) 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TVK-46JYPW4-50&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=7937fa5289fbbd0dff4e328e2bb20f09


False Nearest Neighbors
• Introduced in 1992 by Kennel, 

Brown, and Abarbanel

• Calculation of false nearest 
neighbors in successively 
higher embedding dimensions

• As d is increased, the fraction 
of neighbors that are false 
drops to near zero

• Good for smaller datasets and 
rather robust to noise

1992 Paper on False Nearest Neighbors
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Lag Space
• Not necessarily the same dimensions 

as embedding space

• Goutte Map dynamics depend only 
on the second and fourth time lag
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Lag Space Estimation In Time Series Modelling (1997) 

Goutte Map

Problem:  How can we measure both the 
embedding dimension and lag space?

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.1940
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Artificial Neural Networks
• Mathematical Models of Biological 

Neurons

• Used in Classification Problems
– Handwriting Analysis

• Function Approximation
– Forecasting Time Series
– Studying Properties of Systems
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Function Approximation
• Known as Universal Approximators

• The architecture of the neural 
network uses time-delayed data

Structure of a Single-Layer 
Feed forward Neural Network

x = [45, 34, 23, 56, 34, 25, …]
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Multilayer Feedforward Networks are Universal Approximators (1989)

http://portal.acm.org/citation.cfm?id=70408


Function Approximation
• Next Step Prediction

– Takes d previous points and predicts the next step
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Training
1. Initialize a matrix and b vector
2. Compare predictions       

to actual values

3. Change parameters accordingly 
4. Repeat millions of times
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Fitting the model to data (Wikimedia)
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Convergence

• The global optimum is found at the
lowest mean square error
– Connection strengths can be any

real number
– Like finding the lowest point 

in a mountain range

• Numerous low points so we must 
devise ways to avoid these local optimum
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Time Lag Sensitivities
• We can train a neural network on data and study the model
• Find how much the output of the neural network varies when 

perturbing each time lag
• “Important” lags will have higher sensitivity to changes in values
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Time Lag Sensitivities
• We estimate the sensitivity of each time lag in the neural network:
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Expected Sensitivities
• For known systems we can estimate what the sensitivities should be 

• After training neural networks on data from different maps the 
difference between actual and expected sensitivities is <1%
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Hénon Map
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Strange Attractor of Hénon Map

A two-dimensional mapping with a strange attractor (1976)

Embedding of 2

Sensitivities

S(1) = 1.8959       S(2) = 0.3



Delayed Hénon Map

Strange Attractor of Delayed Hénon Map

High-dimensional Dynamics in the Delayed Hénon Map (2006)

dkkk xxx -- --= 1.06.11 2
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Embedding of d

Sensitivities

S(1) = 1.9018        S(4) = .1

http://www.ejtp.com/articles/ejtpv3i12p19.pdf


Preface Map “The Volatile Wife”
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Embedding of 3

Strange Attractor of Preface Map
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Chaos and Time-Series Analysis  (2003)
Images of a Complex World: The Art and Poetry of Chaos  (2005)

http://sprott.physics.wisc.edu/chaostsa/
http://sprott.physics.wisc.edu/chaostsa/


Goutte Map
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Strange Attractor of Goutte Map

Embedding of 4
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Lag Space Estimation In Time Series Modelling (1997) 

S(2) = 1.8959       S(4) = 0.3

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.1940
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Results from Other Methods
Hénon Map Neural 

Network

False Nearest
Neighbors

Correlation
Dimension
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Optimal Embedding of 2



Results from Other Methods
Delayed Hénon Map Neural 

Network

False Nearest
Neighbors

Correlation
Dimension
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Optimal Embedding of 4



Results from Other Methods
Preface Map Neural 

Network

False Nearest
Neighbors

Correlation
Dimension
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Optimal Embedding of 3



Results from Other Methods
Goutte Map Neural 

Network

False Nearest
Neighbors

Correlation
Dimension
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Optimal Embedding of 4



Comparison using Data Set Size

• Varied the length of the Hénon 
map time series by powers of 2

• Compared methods to actual 
values using normalized RMS 
error E
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Comparison using Noisy Data Sets
• Vary the noise in the system 

by adding Gaussian White 
Noise to a fixed length time 
series from the Hénon Map

• Compared methods to actual 
values using normalized RMS 
error

• Used noiseless case values for 
comparison of methods

High Noise Low Noise
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Temperature in Madison
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Precipitation in Madison
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Summary
• Neural networks are models that can be 

used to predict the embedding dimension

• They can handle small datasets and 
accurately predict sensitivities for a given 
system

• They prove to be more robust to noise 
than other methods used

• They can be used to determine the lag 
space where methods cannot
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