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Discrete Time Series

« Scalar chaotic time series A
— i.e. average daily temperatures I 5 O O O
[45, 34, 23, 56, 34, 25, ...] ) I I IO N
« Data given discrete intervals
— i.e. seconds, days, etc. —— >

Discrete Time Series (Wikimedia)
 We assume a combination of past
values in the time series predict the future



Time Lags

« Each discrete interval refers to a dimension or time lag

1st Time Lag 2nd Time Lag
[45, 34, 23, 56, 34, 25, .. ] X, =X, X, 4 X5
Current Value 2nd Time Lag Current Value



Outline

Discrete Time Series
Embedding Problem
Methods Traditionally Used
Lag Space for a System

Overview of Artificial Neural Networks
—  Calculation of time lag sensitivities
—  Comparison of model to known systems

Comparison to other methods
Results and Discussions




Embedding Problem

Problem: How do we choose the optimal embedding dimension
that the model can use to unfold the data?

 The embedding dimension is related to the
minimum number of variables required to
construct the data

Or Xt

« Exactly how many time lags are required to
reconstruct the system without any information

being lost but without adding unnecessary A5 4 @5 0 05 1 15
information
— j.e.aball seenin 2d, 3d, and 3d + Time Xk
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ARMA Models

« Autoregressive Moving Average Models

— Fits a polynomial to the data based on linear combinations of past
values

d q
X, =f+e + Zaixk—i + Z®i8k—i
i1 =

— Produces a linear function

— Can create very complicated dynamics but has difficulty with
nonlinear systems



Autocorrelation Function

FlndS COI’I’e|atIOHS Wlthln data Logistic Map Autocorrelation Function .

MUCh I|ke the ARMA mOdel, =] S NI ................. ................. .................
shows weak periodicity within | é z §
nonlinear time series. £

No sense of the underlying
dynamical system

Logistic Map 02l s 2 3 ; 5
x, =4x,_ (1 - xk—l)

The Nature of Mathematical Modeling (1999)



http://books.google.com/books?id=h2ey7ajg_cQC&dq=the+nature+of+mathematical+modeling+gershenfeld&printsec=frontcover&source=bl&ots=JXsi7v62M5&sig=UiJtTtqvSGdv79UudrHnccghhwk&hl=en&ei=JQnySeS7BpjKMOf3zbwP&sa=X&oi=book_result&ct=result&resnum=3

Correlation Dimension

* Introduced in 1983 by Grassberger
and Procaccia to find the fractal
dimension of a chaotic system

* One can determine the embedding
dimension by calculating the
correlation dimension in increasing
dimensions until it ceases to change

« Good for large datasets with little noise

Measuring the Strangeness of Strange Attractors (1983)



http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TVK-46JYPW4-50&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=7937fa5289fbbd0dff4e328e2bb20f09

False Nearest Neighbors

* Introduced in 1992 by Kennel,
Brown, and Abarbanel Goutte Map

« Calculation of false nearest
neighbors in successively
higher embedding dimensions

% of False Neighbors
o O O O
O NN B OO 0

« Asdis increased, the fraction
of neighbors that are false B 0
drops to near zero
1 2 3 4 5 6
 Good for smaller datasets and Dimension

rather robust to noise

1992 Paper on False Nearest Neighbors



http://adsabs.harvard.edu/abs/1992PhRvA..45.3403K
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Lag Space

Goutte Map

* Not necessarily the same dimensions
as embedding space

» Goutte Map dynamics depend only
on the second and fourth time lag

Problem: How can we measure both the A
embedding dimension and lag space?

Lag Space Estimation In Time Series Modelling (1997)



http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.1940
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Artificial Neural Networks

Mathematical Models of Biological
Neurons

Used in Classification Problems
— Handwriting Analysis

Function Approximation
— Forecasting Time Series

m
— Studying Properties of Systems _
Ve =4 b+ 2 ayx,
j=1




Function Approximation

 Known as Universal Approximators 1

 The architecture of the neural X1
network uses time-delayed data

x = [45, 34, 23, 56, 34, 25, ...]

Xk-d

Structure of a Single-Layer
Feed forward Neural Network

n d
X, = sz' tanh(al.0 + Z%xkj]
i=1 j=1

Multilayer Feedforward Networks are Universal Approximators (1989)



http://portal.acm.org/citation.cfm?id=70408

Function Approximation

» Next Step Prediction
— Takes d previous points and predicts the next step

1.8
2.2

Neural
Network

n d
X, = sz‘ tanh[aio + Zal.jxkj]
i=1 j=1




Training

1. Initialize a matrix and b vector

2. Compare predictions X,
to actual values X,

C

2.

k=1

Mean Square Error

N

X

)2
9

C

c = length of time series

3. Change parameters accordingly
4. Repeat millions of times

%

Fitting the model to data (Wikimedia)



Convergence

* The global optimum is found at the
lowest mean square error

— Connection strengths can be any
real number

— Like finding the lowest point
in @ mountain range

 Numerous low points so we must
devise ways to avoid these local optimum
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Time Lag Sensitivities

« We can train a neural network on data and study the model

* Find how much the output of the neural network varies when
perturbing each time lag

« “Important” lags will have higher sensitivity to changes in values

Xp =Xt Xy T X4 5

Sensitivities




Time Lag Sensitivities

« We estimate the sensitivity of each time lag in the neural network:

N TR 53
S(J)_ . Z P @
C_] k=j+1 xk_j e
2
»
c
Q
(/)
ax ( 4 ] 1 | 2 | 3 | 4 | 5 | 6
)
= » a.b. sech”| a, +Za. X,
ij i i0 im” k—m
o, 45 Lags



Expected Sensitivities

For known systems we can estimate what the sensitivities should be

x, =1-1.4x; ,-03x,_,

1 | ox ox,
S(j)=— : —2.8x,
c—J k=ZJ;1 ox,_; X, -
P _03
0X)._

After training neural networks on data from different maps the
difference between actual and expected sensitivities is <1%
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Henon Map

—_
o

. 2
xk —1_1.4xk_1 _O.3xk_2
Embedding of 2 05 S
" o)
Sensitivities 15 1 05 0 % 1 15
2 0.5 =
.= —
S(‘l) 0.8 1
0.4 1 M 45
' 1 I 2 l 3 l 4 I 5 xk'1

Strange Attractor of Hénon Map
S(1) = 1.8959 S(2)=0.3

A two-dimensional mapping with a strange attractor (1976)




Delayed Henon Map

x, =1-1.6x,,-0.1x,_

Embedding of d

Sensitivities 15

1.6
1.2
0.8 P
0.4 |

S()

1 2 3 4 5

j Strange Attractor of Delayed Hénon Map
S(1)=1.9018 S4)=.1

High-dimensional Dynamics in the Delayed Hénon Map (2006)



http://www.ejtp.com/articles/ejtpv3i12p19.pdf

Preface Map “The Volatile Wife”

x, =x,,—02x,_,-09x, , +0.6x,_,

Embedding of 3

Xi
Sensitivities
12 17—
0.9 -1 )
S(j) 0.6
0.3 + -1
0 . . . . ) OF

J Strange Attractor of Preface Map

S(1)=1.1502  S(2)=0.9 S(3)=0.6

Chaos and Time-Series Analysis (2003)
Images of a Complex World: The Art and Poetry of Chaos (2005)



http://sprott.physics.wisc.edu/chaostsa/
http://sprott.physics.wisc.edu/chaostsa/

Goutte Map

1E

2 .J
x, =1-14x; , +0.3x, mcen ——
‘ o o g‘ﬁ" ; "’ﬁiﬁf ;
Embedding of 4 e I

red
.o ga.“

w3,
el

Sensitivities 1.5

1.6

o, .

R ; 0‘. - e
o :lz\.{{.'.,t
¥ s{%’,&y g
LIRS

L 2
PR A M 4 O LA
(J ) W it e T B

0.8
0.4

J Strange Attractor of Goutte Map
S(2) = 1.8959 S(4)=0.3

Lag Space Estimation In Time Series Modelling (1997)



http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.1940
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Results from Other Methods

Hénon Map Neural ., ﬂ
[

Network oz

0.4 4

0.

x, =1-14x; , -0.3x,_,

]
Optimal Embedding of 2 False Nearest < ﬂ |i|
]

Neighbors ™|

0.

1
Correlation °7
. . - 0.5
Dimension .
0 .




Results from Other Methods

Delayed Hénon Map Neural 1;?]

Network .|

0.4 1

x, =1-1.6x;, —0.1x,_, R

Optimal Embedding of 4 False Nearest *

60

Neighbors  «

Correlation o
Dimension *°




Results from Other Methods

1.2
Neural °°
Preface Map Nl Eng H D
0 T T T T
]

x, =x,,—02x,,-09x, , +0.6x,_,

Optimal Embedding of 3 False Nearest *
Neighbors 0

1 2 3 4 5
j
1.2 9
Correlation o
Dimension zj
0 T
1 2 3 4 5




Results from Other Methods

Neural 12
Goutte Map Network o H
0.: |:|
B 2 J 4 5
xk — 1_1.4xk_2 _O.3xk_4 -
: : False Nearest .
fa 50
Optimal Embedding o e . gEll |l| |i|
0

12
Correlation °° i
Dimension 2'6
| B




Comparison using Data Set Size

« Varied the length of the Hénon
map time series by powers of 2

« Compared methods to actual
values using normalized RMS
error E

I
£ S

\ gszm

J

%

70

-+~ Neursl Network Method
-» Fak e Nearest Neighbors

= Correlation Dimension

0
32

256 2048

d A 2 D g . .
Z(S(j) —S(j)) Where § is predicted value for a test data set size
is actual value for an ideal data set size

is one dimension of d that we are studying



Comparison using Noisy Data Sets

 Vary th_e noise mlthe sygtem Ve e Neorel Nt Methog
by adding Gaussian White | N «Fake Nearest Neighbors
Noise to a fixed length time - ~+ Comeltion Dimensien

series from the Hénon Map oy 1007 =

« Compared methods to actual
values using normalized RMS

0 . . : R, |
error 0 5 10 15 20 25
Signal - to - Noise Ratio (dB)
High Noise < Low Noise

 Used noiseless case values for
comparison of methods
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Temperature in Madison

0.35

@ 4 neurons
B 16 neurons

0.3

0.25

0.2

0.15

Sensitivities

0.1

0.05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Dimensions



Precipitation in Madison

@0 4 neurons
Il 16 neurons

0.1

0.08 —

Sensitivities

0.06

0.04 +

0.02 + ’_I
0 I—Ill—-I ||_i| -II_LI | | =
6 7

1 2 3 4 5 8 9 10 11 12 13 14 15 16 17 18 19 20

Dimensions



Summary

 Neural networks are models that can be
used to predict the embedding dimension

« They can handle small datasets and
accurately predict sensitivities for a given
system i

* They prove to be more robust to noise
than other methods used

« They can be used to determine the lag

siace where methods cannot
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